Implementação da estratégia de negociação
Implementação da estratégia de negociação
Eu encontrei alguns problemas ao implementar um algoritmo de troca de pares simples, imaginando se alguém poderia me ajudar com alguns dos meus códigos. O algoritmo é fácil, eu detectei sid (27809) e sid (28145) foram altamente correlacionados para o primeiro semestre (01 de janeiro - 31 de julho). O que eu quero fazer contém 3 etapas:
Etapa 1: normalizou o preço de cada ação, dividindo o preço de cada dia no primeiro dia (1º de janeiro).
Etapa 2: obtenha a diferença entre as diferenças de preço dessas duas ações, como diff (stock1 - stock2), vamos chamar essa linha por diff-line.
Etapa 3: obtenha duas bandas de Bollinger (uma com variação de 1 vez, a outra com variação de 2 vezes) da linha de comparação, quando a linha de comparação estiver acima da banda superior de 2 vezes, estoque longo2 com a mesma quantidade de dinheiro e quando a linha abs tocar o banco 1 vezes superior, termine o investimento. E use da mesma maneira quando a linha diff tiver bandas mais baixas.
Eu tentei implementar da seguinte forma, de acordo com uma estratégia de negociação de pares anteriores neste site, mas infelizmente não familiarizado com a biblioteca em Quantopian. Espero que alguém possa me ajudar, obrigado antecipadamente.
Eu criei uma estratégia semelhante de negociação de pares no link abaixo.
A única diferença que fiz foi que olhei para um período médio de 20 dias para calcular a média e o desvio padrão. Eu também defino negociações estreitas no momento da compra. Então, por exemplo, se eu comprasse o estoque1 e vendesse o estoque2 com uma razão de 0,5, eu os decidiria no fechamento da negociação, quando o índice ultrapassasse algum limite (por exemplo, 0,6).
Eu acho que você pode usar isso como base.
Obrigado Branko, é muito gentil de sua parte, vou tentar.
Acho que faz mais sentido considerar uma relação entre os dois preços das ações, como Branko fez, em vez de olhar para a diferença absoluta nos dois preços. No entanto, para referência futura, aqui está uma maneira de registrar o preço de uma garantia no início da negociação:
Além disso, confira esta parte do código de Branko (é muito legal):
A transformação em lote é uma ótima ferramenta em Quantopian. É um decorador (que é um conceito que eu achei um pouco confuso na primeira vez que vi um, então se a minha explicação for totalmente desnecessária, me perdoe). Basicamente, o que os decoradores fazem é pegar uma função como argumento e retornar uma nova função. Então, no Quantopian, o decorador de transformação de lote permite que você realmente defina com facilidade os dados para uma determinada janela de tempo, em vez de um período de tempo mais curto. Quando você está trabalhando com Bollinger Bands, isso é muito útil!
Desculpe, algo deu errado. Tente novamente ou entre em contato enviando feedback.
Você enviou com sucesso um ticket de suporte.
Nossa equipe de suporte entrará em contato em breve.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
O Trader R.
Usando R e ferramentas relacionadas em Finanças Quantitativas.
Arquivo para as Estratégias de Negociação & # 8216; & # 8217; Categoria.
Vinculando R ao IQFeed com o pacote QuantTools.
O IQFeed fornece serviços de dados de fluxo contínuo e soluções de negociação que cobrem o mercado agrícola, de energia e financeiro. É um provedor de feed de dados bem conhecido e reconhecido, voltado para usuários de varejo e pequenas instituições. O preço da assinatura começa em cerca de US $ 80 / mês.
Stanislav Kovalevsky desenvolveu um pacote chamado QuantTools. É um pacote tudo em um projetado para melhorar a modelagem de negociação quantitativa. Ele permite baixar e organizar dados históricos de mercado de várias fontes, como Yahoo, Google, Finam, MOEX e IQFeed. O recurso que mais me interessa é a capacidade de vincular o IQFeed à R. Eu uso o IQFeed há alguns anos e estou feliz com ele (não estou afiliado à empresa em nenhum caminho). Mais informações podem ser encontradas aqui. Eu tenho procurado uma integração dentro de R por um tempo e aqui está. Como resultado, depois que fiz alguns testes, mudei meu código que ainda estava em Python para R. Apenas para completar, aqui está um link que explica como baixar dados históricos do IQFeed usando Python.
A QuantTools oferece quatro funcionalidades principais: Obter dados de mercado, Armazenar / Recuperar dados de mercado, Dados de séries temporais de plotagem e Testes reversos.
Primeiro, verifique se o IQfeed está aberto. Você pode baixar dados diários ou intradiários. O código abaixo faz o download dos preços diários (Aberto, Alto, Baixo, Fechado) para o SPY de 1º de janeiro de 2017 a 1º de junho de 2017.
O código abaixo faz o download dos dados intraday de 1º de maio de 2017 a 3 de maio de 2017.
Observe o parâmetro do período. Pode usar qualquer um dos seguintes valores: tick, 1min, 5min, 10min, 15min, 30min, hora, dia, semana, mês, dependendo da freqüência que você precisa.
O QuantTools facilita o processo de gerenciar e armazenar dados do mercado de ticks. Você acabou de configurar os parâmetros de armazenamento e está pronto para começar. Os parâmetros são onde, desde que data e quais símbolos você gostaria de armazenar. Sempre que você puder adicionar mais símbolos e se eles não estiverem presentes em um armazenamento, o QuantTools tentará obter os dados da data de início especificada. O código abaixo salvará os dados no seguinte diretório: & # 8220; C: / Usuários / Arnaud / Documentos / Dados de Mercado / iqfeed & # 8221 ;. Há uma subpasta por instrumento e os dados são exibidos em arquivos. rds.
Você também pode armazenar dados entre datas específicas. Substitua a última linha de código acima por uma das abaixo.
Agora, se você quiser recuperar alguns dos dados armazenados, basta executar algo como:
Observe que apenas os ticks são suportados no armazenamento local, portanto, o período deve ser & # 8216; tick & # 8217;
O QuantTools fornece a função plot_ts para plotar dados de séries temporais sem fins de semana, feriados e lacunas durante a noite. No exemplo abaixo, primeiro recupero os dados armazenados acima, depois seleciono as primeiras 100 observações de preço e, finalmente, desenho o gráfico.
Duas coisas para notar: primeiro espião é um objeto data. table, portanto, a sintaxe acima. Para obter uma visão geral rápida dos recursos do data. table, dê uma olhada nesta excelente folha de dicas do DataCamp. Segundo, o parâmetro local é TRUE, pois os dados são recuperados do armazenamento interno.
O QuantTools permite escrever sua própria estratégia de negociação usando sua API C ++. Eu não vou elaborar sobre isso, pois isso é basicamente código C ++. Você pode consultar a seção Exemplos no site da QuantTools.
No geral, acho o pacote extremamente útil e bem documentado. O único bit faltante é o feed ao vivo entre R e IQFeed, que fará do pacote uma solução real de ponta a ponta.
Como de costume, qualquer comentário é bem-vindo.
BERT: um recém-chegado na conexão R Excel.
Há alguns meses, um leitor me mostrou essa nova maneira de conectar R e Excel. Eu não sei há quanto tempo isso acontece, mas nunca me deparei com isso e nunca vi nenhum post ou artigo de blog sobre isso. Então eu decidi escrever um post enquanto a ferramenta realmente vale a pena e antes que alguém pergunte, eu não estou relacionado à empresa de forma alguma.
BERT significa Basic Excel R Toolkit. É gratuito (licenciado sob a GPL v2) e foi desenvolvido pela Structured Data LLC. No momento em que escrevo, a versão atual do BERT é 1.07. Mais informações podem ser encontradas aqui. De uma perspectiva mais técnica, o BERT é projetado para suportar a execução de funções R a partir de células da planilha do Excel. Em termos do Excel, é para escrever Funções definidas pelo usuário (UDFs) em R.
Neste post eu não vou mostrar como R e Excel interagem via BERT. Há muito bons tutoriais aqui, aqui e aqui. Em vez disso, quero mostrar como usei BERT para construir uma torre de controle & # 8220; & # 8221; para minha negociação.
Meus sinais de negociação são gerados usando uma longa lista de arquivos R, mas eu preciso da flexibilidade do Excel para exibir os resultados de forma rápida e eficiente. Como mostrado acima, o BERT pode fazer isso para mim, mas também quero adaptar o aplicativo às minhas necessidades. Combinando o poder do XML, VBA, R e BERT, posso criar um aplicativo bonito, mas poderoso, na forma de um arquivo do Excel com código VBA mínimo. Em última análise, eu tenho um único arquivo do Excel reunindo todas as tarefas necessárias para gerenciar meu portfólio: atualização de banco de dados, geração de sinal, submissão de pedidos etc & # 8230; Minha abordagem pode ser dividida nos três passos abaixo:
Use XML para criar menus e botões definidos pelo usuário em um arquivo do Excel. Os menus e botões acima são essencialmente chamadas para funções do VBA. Essas funções do VBA são encapsuladas em torno das funções R definidas usando BERT.
Com essa abordagem, posso manter uma clara distinção entre o núcleo do meu código mantido em R, SQL e Python e tudo o que é usado para exibir e formatar os resultados mantidos no Excel, VBA & amp; XML Nas próximas seções, apresento o pré-requisito para desenvolver tal abordagem e um guia passo a passo que explica como o BERT poderia ser usado para simplesmente passar dados de R para o Excel com o mínimo de código VBA.
1 & # 8211; Baixe e instale o BERT neste link. Quando a instalação estiver concluída, você deve ter um novo menu Add-Ins no Excel com os botões, conforme mostrado abaixo. É assim que o BERT se materializa no Excel.
2 & # 8211; Faça o download e instale o editor de interface do usuário personalizada: O Editor de interface do usuário personalizado permite criar menus e botões definidos pelo usuário na faixa de opções do Excel. Um procedimento passo a passo está disponível aqui.
1 & # 8211; Código R: A função R abaixo é um código muito simples apenas para fins ilustrativos. Calcula e retorna os resíduos de uma regressão linear. É isso que queremos recuperar no Excel. Salve isso em um arquivo chamado myRCode. R (qualquer outro nome é bom) em um diretório de sua escolha.
2 & # 8211; functions. R em BERT: No Excel selecione Add-Ins - & gt; Diretório base e abra o arquivo chamado functions. R. Neste arquivo, cole o seguinte código. Certifique-se de inserir o caminho correto.
Isso é apenas o fornecimento de BERT no arquivo R que você criou acima. Em seguida, salve e feche as funções do arquivo. Se você quiser fazer qualquer alteração no arquivo R criado na etapa 1, terá que recarregá-lo usando o botão BERT & # 8220; Recarregar o arquivo de inicialização & # 8221; do menu Add-Ins no Excel.
3 & # 8211; No Excel: Crie e salve um arquivo chamado myFile. xslm (qualquer outro nome é bom). Este é um arquivo habilitado para macro que você salva no diretório de sua escolha. Depois que o arquivo for salvo, feche-o.
4 & # 8211; Abra o arquivo criado acima no editor da interface do usuário personalizada: Depois que o arquivo estiver aberto, cole o código abaixo.
Você deve ter algo parecido com isto no editor de XML:
Essencialmente, este pedaço de código XML cria um menu adicional (RTrader), um novo grupo (My Group) e um botão definido pelo usuário (New Button) na faixa de opções do Excel. Quando terminar, abra myFile. xslm no Excel e feche o Custom UI Editor. Você deveria ver algo assim.
5 & # 8211; Abra o editor VBA: Em myFile. xlsm, insira um novo módulo. Cole o código abaixo no módulo recém-criado.
Isso apaga os resultados anteriores na planilha antes de lidar com os novos.
6 & # 8211; Clique no botão New: Agora volte para a planilha e no menu RTrader, clique no botão & # 8220; New Button & # 8221; botão. Você deve ver algo como o abaixo aparece.
O guia acima é uma versão muito básica do que pode ser obtido usando o BERT, mas mostra como combinar o poder de várias ferramentas específicas para criar seu próprio aplicativo personalizado. Da minha perspectiva, o interesse de tal abordagem é a capacidade de colar R e Excel, obviamente, mas também incluir pedaços de código XML (e em lote) do Python, SQL e muito mais. Isso é exatamente o que eu precisava. Por fim, gostaria de saber se alguém tem alguma experiência com o BERT?
Estratégia de negociação: aproveitando ao máximo os dados da amostra.
Ao testar estratégias de negociação, uma abordagem comum é dividir o conjunto de dados inicial em dados de amostra: a parte dos dados projetados para calibrar o modelo e os dados de amostra: a parte dos dados usada para validar a calibração e garantir que o desempenho criado na amostra será refletido no mundo real. Como regra geral, cerca de 70% dos dados iniciais podem ser usados para calibração (ou seja, na amostra) e 30% para validação (ou seja, fora da amostra). Em seguida, uma comparação entre os dados de entrada e de saída ajuda a decidir se o modelo é suficientemente robusto. Este post visa dar um passo adiante e fornece um método estatístico para decidir se os dados fora da amostra estão alinhados com o que foi criado na amostra.
No gráfico abaixo, a área azul representa o desempenho fora da amostra de uma das minhas estratégias.
Uma inspeção visual simples revela um bom ajuste entre o desempenho de entrada e saída da amostra, mas que grau de confiança eu tenho nisso? Nesta fase não muito e esta é a questão. O que é realmente necessário é uma medida de similaridade entre os conjuntos de dados de entrada e de saída. Em termos estatísticos, isso pode ser traduzido como a probabilidade de que os números de desempenho dentro e fora da amostra sejam provenientes da mesma distribuição. Existe um teste estatístico não paramétrico que faz exatamente isso: o teste de Kruskall-Wallis. Uma boa definição deste teste pode ser encontrada no R-Tutor Uma coleção de amostras de dados é independente se eles vêm de populações não relacionadas e as amostras não afetam umas às outras. Usando o Teste de Kruskal-Wallis, podemos decidir se as distribuições populacionais são idênticas, sem presumir que elas sigam a distribuição normal. & # 8221; O benefício adicional desse teste não está assumindo uma distribuição normal.
Existem outros testes da mesma natureza que poderiam se encaixar nessa estrutura. O teste de Mann-Whitney-Wilcoxon ou os testes de Kolmogorov-Smirnov se encaixam perfeitamente na estrutura descrita aqui, porém isso está além do escopo deste artigo para discutir os prós e contras de cada um desses testes. Uma boa descrição junto com exemplos de R pode ser encontrada aqui.
Aqui está o código usado para gerar o gráfico acima e a análise:
No exemplo acima, o período de amostragem é maior do que o período de amostragem, portanto, eu criei aleatoriamente 1.000 subconjuntos dos dados da amostra, cada um deles tendo o mesmo comprimento que os dados fora da amostra. Então, testei cada um em um subconjunto de amostras em relação aos dados fora da amostra e gravei os valores p. Esse processo não cria um único valor p para o teste Kruskall-Wallis, mas uma distribuição que torna a análise mais robusta. Neste exemplo, a média dos valores de p é bem acima de zero (0,478), indicando que a hipótese nula deve ser aceita: há fortes evidências de que os dados de entrada e saída da amostra são provenientes da mesma distribuição.
Como de costume, o que é apresentado neste post é um exemplo de brinquedo que apenas arranha a superfície do problema e deve ser adaptado às necessidades individuais. No entanto, penso que propõe um quadro estatístico interessante e racional para avaliar os resultados fora da amostra.
Este post é inspirado nos dois artigos seguintes:
Vigier Alexandre, Chmil Swann (2007), "Efeitos de várias funções de otimização no desempenho fora da amostra de estratégias de negociação geneticamente evoluídas", prevendo a conferência sobre mercados financeiros.
Vigier Alexandre, Chmil Swann (2010), «Um processo de otimização para melhorar a consistência da amostra, um caso da Bolsa de Valores», JP Morgan Cazenove Equity Quantitative Conference, Londres, outubro de 2010.
Apresentando o fidlr: LoanceR de Dados Financeiros.
O fidlr é um suplemento do RStudio projetado para simplificar o processo de download de dados financeiros de vários provedores. Esta versão inicial é um wrapper em torno da função getSymbols no pacote quantmod e somente o Yahoo, Google, FRED e Oanda são suportados. Eu provavelmente adicionarei funcionalidades ao longo do tempo. Como de costume, com essas coisas apenas um lembrete: "O SOFTWARE É FORNECIDO" COMO ESTÁ, SEM GARANTIA DE NENHUM TIPO "# 8230; & # 8221;
Como instalar e usar o fidlr?
Você pode obter o addin / package do seu repositório Github aqui (eu vou registrá-lo no CRAN mais tarde) Instale o addin. Existe um excelente tutorial para instalar o RStudio Addins aqui. Depois que o addin é instalado, ele deve aparecer no menu Addin. Basta escolher fidlr no menu e uma janela como abaixo deve aparecer. Escolha um provedor de dados no menu suspenso Origem. Selecione um intervalo de datas no menu Data Insira o símbolo que você deseja baixar na caixa de texto do instrumento. Para baixar vários símbolos basta digitar os símbolos separados por vírgulas. Use os botões de opção para escolher se deseja baixar o instrumento em um arquivo csv ou no ambiente global. O arquivo csv será salvo no diretório de trabalho e haverá um arquivo csv por instrumento. Pressione Executar para obter os dados ou Fechar para fechar o suplemento.
Mensagens de erro e avisos são manipulados pelos pacotes subjacentes (quantmod e Shiny) e podem ser lidos no console.
Esta é uma primeira versão do projeto, então não espere a perfeição, mas esperamos que melhore com o tempo. Por favor, informe qualquer comentário, sugestão, erro etc & # 8230; para: thertrader @ gmail.
Manter um banco de dados de arquivos de preços em R.
Fazer pesquisa quantitativa implica muita análise de dados e é preciso dados limpos e confiáveis para conseguir isso. O que é realmente necessário são dados limpos que sejam facilmente acessíveis (mesmo sem uma conexão com a Internet). A maneira mais eficiente de fazer isso para mim foi manter um conjunto de arquivos csv. Obviamente, este processo pode ser tratado de várias maneiras, mas eu achei um tempo extra muito eficiente e simples para manter um diretório onde eu armazeno e atualizo arquivos csv. Eu tenho um arquivo csv por instrumento e cada arquivo é nomeado após o instrumento que ele contém. A razão pela qual eu faço isso é dupla: Primeiro, eu não quero baixar dados (de preço) do Yahoo, Google, etc & # 8230; toda vez que eu quiser testar uma nova ideia, mas mais importante, uma vez que eu identifiquei e consertei um problema, eu não quero ter que fazer isso novamente na próxima vez que eu precisar do mesmo instrumento. Simples, mas muito eficiente até agora. O processo é resumido no gráfico abaixo.
Em tudo o que se segue, presumo que os dados estão vindo do Yahoo. O código terá que ser alterado para os dados do Google, Quandl, etc & # 8230; Além disso, apresento o processo de atualização dos dados diários de preços. A configuração será diferente para dados de frequência mais alta e outro tipo de conjunto de dados (ou seja, diferente dos preços).
1 & # 8211; Download de dados inicial (listOfInstruments. R & amp; historicalData. R)
O arquivo listOfInstruments. R é um arquivo contendo apenas a lista de todos os instrumentos.
Se um instrumento não é parte da minha lista (ou seja, nenhum arquivo csv na minha pasta de dados) ou se você fizer isso pela primeira vez, você terá que baixar o conjunto de dados históricos inicial. O exemplo abaixo faz o download de um conjunto de cotações diárias dos ETFs do Yahoo Finance até janeiro de 2000 e armazena os dados em um arquivo csv.
2 & # 8211; Atualizar dados existentes (updateData. R)
O código abaixo começa a partir de arquivos existentes na pasta dedicada e atualiza todos eles um após o outro. Eu costumo executar este processo todos os dias, exceto quando eu estou de férias. Para adicionar um novo instrumento, basta executar o passo 1 acima apenas para este instrumento.
3 & # 8211; Crie um arquivo de lote (updateDailyPrices. bat)
Outra parte importante do trabalho é criar um arquivo em lotes que automatize o processo de atualização acima (eu sou um usuário do Windows). Isso evita abrir o R / RStudio e executar o código a partir dele. O código abaixo é colocado em um arquivo. bat (o caminho deve ser alterado com a configuração do leitor). Note que eu adicionei um arquivo de saída (updateLog. txt) para rastrear a execução.
O processo acima é extremamente simples, pois descreve apenas como atualizar dados diários de preços. Eu tenho usado isso por um tempo e tem funcionado muito bem para mim até agora. Para dados mais avançados e / ou freqüências mais altas, as coisas podem ficar muito mais complicadas.
Como de costume, qualquer comentário é bem-vindo.
Avaliação fatorial na gestão quantitativa de portfólios.
Quando se trata de gerenciar uma carteira de ações versus um benchmark, o problema é muito diferente de definir uma estratégia de retorno absoluto. No primeiro, é preciso manter mais estoques do que no segundo, onde nenhuma ação pode ser detida se não houver oportunidade suficiente. A razão para isso é o erro de rastreamento. Isso é definido como o desvio padrão do retorno da carteira menos o retorno de referência. Quanto menos ações forem mantidas em relação a um benchmark, maior será o erro de rastreamento (por exemplo, maior risco).
A análise a seguir é amplamente inspirada no livro "Active Portfolio Management" # 8221; por Grinold & amp; Kahn Esta é a bíblia para qualquer pessoa interessada em administrar um portfólio em relação a um benchmark. Eu encorajo fortemente qualquer pessoa com interesse no tópico a ler o livro do começo ao fim. É muito bem escrito e estabelece as bases da gestão sistemática de carteiras ativas (não tenho nenhuma afiliação ao editor ou aos autores).
Aqui, estamos tentando classificar com a maior precisão possível as ações no universo de investimento em uma base de retorno a termo. Muitas pessoas criaram muitas ferramentas e inúmeras variantes dessas ferramentas foram desenvolvidas para conseguir isso. Neste post concentro-me em duas métricas simples e amplamente utilizadas: Coeficiente de Informação (IC) e Quantiles Return (QR).
O CI fornece uma visão geral da capacidade de previsão do fator. Mais precisamente, isso é uma medida de quão bem o fator classifica os estoques em uma base de retorno a termo. O IC é definido como a correlação de classificação (ρ) entre a métrica (por exemplo, fator) e o retorno para a frente. Em termos estatísticos, a correlação de postos é uma medida não paramétrica da dependência entre duas variáveis. Para uma amostra de tamanho n, as n pontuações brutas são convertidas em classificações e ρ é calculado a partir de:
O horizonte para o retorno para frente tem que ser definido pelo analista e é uma função do turnover da estratégia e da decadência alfa (isso tem sido objeto de extensa pesquisa). Obviamente, os CIs devem ser o mais alto possível em termos absolutos.
Para o leitor atento, no livro de Grinold & amp; Kahn é uma fórmula que liga a Relação de Informação (IR) e IC: com amplitude sendo o número de apostas independentes (trades). Essa fórmula é conhecida como a lei fundamental do gerenciamento ativo. O problema é que, muitas vezes, definir com precisão a amplitude não é tão fácil quanto parece.
Para ter uma estimativa mais precisa do fator poder preditivo, é necessário dar um passo além e agrupar os estoques por quantis de valores de fatores e, em seguida, analisar o retorno médio a termo (ou qualquer outra métrica de tendência central) de cada um deles. quantis. A utilidade desta ferramenta é simples. Um fator pode ter um bom IC, mas seu poder preditivo pode ser limitado a um pequeno número de ações. Isso não é bom, pois um gerente de portfólio terá que escolher ações dentro de todo o universo para cumprir sua restrição de erro de rastreamento. Bons retornos quantílicos são caracterizados por uma relação monótona entre os quantis individuais e os retornos futuros.
Todas as ações no índice S & amp; P500 (no momento da redação). Obviamente, há um viés de sobrevivência: a lista de ações no índice mudou significativamente entre o início e o final do período de amostragem, no entanto, é bom o suficiente apenas para fins ilustrativos.
O código abaixo faz o download dos preços das ações individuais no S & amp; P500 entre janeiro de 2005 e hoje (leva um tempo) e transforma os preços brutos em retorno nos últimos 12 meses e no último mês. O primeiro é o nosso fator, o último será usado como medida de retorno para frente.
Abaixo está o código para calcular o Coeficiente de Informação e o Retorno de Quantiles. Observe que eu usei quintis neste exemplo, mas qualquer outro método de agrupamento (terciles, deciles, etc.) pode ser usado. isso realmente depende do tamanho da amostra, do que você quer capturar e do tempo em que deseja ter uma visão geral ampla ou se concentrar nas caudas de distribuição. Para estimar os retornos dentro de cada quintil, a mediana tem sido usada como o estimador de tendência central. Essa medida é muito menos sensível a outliers do que a média aritmética.
E finalmente o código para produzir o gráfico de retorno Quantiles.
3 & # 8211; Como explorar as informações acima?
No gráfico acima, o Q1 é mais baixo nos últimos 12 meses e o Q5, o mais alto. Há um aumento quase monótono no retorno dos quantis entre Q1 e Q5, o que indica claramente que os estoques que caem em Q5 superam aqueles que caem em Q1 em cerca de 1% ao mês. Isso é muito significativo e poderoso para um fator tão simples (não é realmente uma surpresa, ainda que & # 8230;). Portanto, há maiores chances de vencer o índice superpondo as ações no Q5 e subestimando as que caem no primeiro trimestre em relação ao benchmark.
Um IC de 0,0206 pode não significar muito em si, mas é significativamente diferente de 0 e indica um bom poder de previsão dos últimos 12 meses de retorno geral. Testes de significância formal podem ser avaliados, mas isso está além do escopo deste artigo.
A estrutura acima é excelente para avaliar a qualidade dos fatores de investimento, no entanto, há várias limitações práticas que precisam ser abordadas para a implementação na vida real:
Reequilíbrio: Na descrição acima, é assumido que no final de cada mês a carteira é totalmente reequilibrada. Isso significa que todas as ações que caíram no 1T estão abaixo do peso e todas as ações que caíram no 5ºT estão com sobrepeso em relação ao benchmark. Isso nem sempre é possível por razões práticas: algumas ações podem ser excluídas do universo de investimentos, existem restrições sobre o peso da indústria ou do setor, há restrições no volume de negócios etc. & # 8230; Custos de Transação: Isso não foi levado em conta na análise acima e isso é um sério freio para a implementação da vida real. Considerações de rotatividade são geralmente implementadas na vida real em uma forma de penalidade na qualidade do fator. Coeficiente de transferência: Esta é uma extensão da lei fundamental da gestão ativa e relaxa a suposição do modelo de Grinold de que os gerentes não enfrentam restrições que os impeçam de traduzir suas percepções de investimentos diretamente em apostas de portfólio.
E, finalmente, estou espantado com o que pode ser alcançado em menos de 80 linhas de código com o R & # 8230;
Como de costume, qualquer comentário é bem-vindo.
Risco como uma Variável de Sobrevivência & # 8221;
Me deparo com muitas estratégias na blogosfera, algumas são interessantes, algumas são uma completa perda de tempo, mas a maioria compartilha uma característica comum: pessoas desenvolvendo essas estratégias fazem sua lição de casa em termos de análise do retorno, mas muito menos atenção é dada ao lado do risco sua natureza aleatória. Eu vi comentários como "um rebaixamento de 25% em 2011, mas um excelente retorno geral". Bem, a minha aposta é que ninguém na terra permitirá que você experimente uma perda de 25% com seu dinheiro (a menos que acordos especiais estejam em vigor). No mundo dos fundos de hedge, as pessoas têm muito pouca tolerância ao saque. Geralmente, como um novo operador em um fundo de hedge, supondo que você não tenha reputação, você tem muito pouco tempo para se provar. Você deve ganhar dinheiro a partir do primeiro dia e continuar fazendo isso por alguns meses antes de ganhar um pouco de credibilidade.
Primeiro, digamos que você começou mal e perdeu dinheiro no começo. Com um rebaixamento de 10%, você certamente está fora, mas mesmo com um rebaixamento de 5%, as chances de ver sua alocação reduzida são muito altas. Isso tem implicações significativas em suas estratégias. Suponhamos que, se você perder 5%, sua alocação será dividida por 2 e você voltará à sua alocação inicial somente quando ultrapassar a marca d'água alta novamente (por exemplo, o levantamento voltará a 0). No gráfico abaixo, simulei o experimento com uma das minhas estratégias.
Você começa a operar em 1º de junho de 2003 e tudo vai bem até 23 de julho de 2003, onde sua curva de rebaixamento atinge o limite de -5% (** 1 **). Sua alocação é reduzida em 50% e você não cruza o limite máximo até 05 de dezembro de 2003 (** 3 **). Se você mantiver a alocação inalterada, o nível da marca d'água alta teria sido ultrapassado em 28 de outubro de 2003 (** 2 **) e até o final do ano você teria ganho mais dinheiro.
Mas vamos empurrar o raciocínio um pouco mais. Ainda no gráfico acima, suponha que você tenha muito azar e comece a negociar em meados de junho de 2003. Você atingiu o limite de rebaixamento de 10% no início de agosto e está provavelmente fora do jogo. Você teria começado no início de agosto a sua alocação não teria sido cortada e você acaba fazendo um bom ano em apenas 4 meses completos de negociação. Nesses dois exemplos, nada mudou, mas sua data de início & # 8230 ;.
O sucesso comercial de qualquer indivíduo tem alguma forma de dependência de caminho e não há muito o que fazer sobre isso. No entanto, você pode controlar o tamanho do drawdown de uma estratégia e isso deve ser tratado com muito cuidado. Um portfólio deve ser diversificado em todas as dimensões possíveis: classes de ativos, estratégias de investimento, frequências de negociação, etc & # 8230 ;. Dessa perspectiva, o risco é a sua "variável de sobrevivência". Se gerenciado corretamente, você tem a chance de permanecer no jogo por tempo suficiente para perceber o potencial de sua estratégia. Caso contrário, você não estará lá no próximo mês para ver o que acontece.
Como de costume, qualquer comentário é bem-vindo.
Um aplicativo simples e brilhante para monitorar as estratégias de negociação & # 8211; Parte II.
Esta é uma continuação do meu post anterior & # 8220; Um aplicativo simples e simples para monitorar as estratégias de negociação & # 8220 ;. Eu adicionei algumas melhorias que tornam o aplicativo um pouco melhor (pelo menos para mim!). Abaixo está a lista de novos recursos:
Um arquivo. csv de amostra (aquele que contém os dados brutos) A & # 8220; EndDate & # 8221; caixa suspensa que permite especificar o final do período. A & # 8220; Risco & # 8221; página contendo uma análise de VaR e um gráfico de pior desempenho ao longo de vários horizontes A & # 8220; How To & # 8221; página explicando como usar e adaptar o aplicativo às necessidades individuais.
Eu também fiz o aplicativo totalmente auto-contido. Agora ele está disponível como um produto autônomo e não é necessário ter o R / RStudio instalado em seu computador para executá-lo. Ele pode ser baixado da conta do Google R Trader Google. Esta versão do aplicativo é executada usando o R portátil e o Chrome portátil. Para o leitor atento, este link explica detalhadamente como empacotar um aplicativo Shiny em um aplicativo de desktop (somente Windows por enquanto).
1 & # 8211; Como instalar o & amp; execute o aplicativo no seu computador.
Criar uma pasta específica Descompacte o conteúdo do arquivo. zip nessa nova pasta. Altere os caminhos no arquivo runShinyApp para corresponder às suas configurações Para executar o aplicativo, basta ativar o arquivo run. vbs. Eu também incluí um ícone (RTraderTradingApp. ico) se você quiser criar um atalho na sua área de trabalho.
ui. R: controla o layout e a aparência do servidor de aplicativos. R: contém as instruções necessárias para criar o aplicativo. Você pode carregar quantas estratégias quiser, contanto que o arquivo csv correspondente tenha o formato correto (veja abaixo). shinyStrategyGeneral. R: carrega os pacotes necessários e inicia o aplicativo.
3 & # 8211; Como adicionar uma estratégia de negociação?
Crie o arquivo. csv correspondente no diretório direito Crie uma nova entrada na função reativa de dados (dentro do arquivo server. R) Adicione um elemento extra ao parâmetro choice na primeira selectInput no sidebarPanel (dentro do arquivo ui. R) . O nome do elemento deve corresponder ao nome da nova entrada acima.
Remova a entrada na função reativa de dados correspondente à estratégia que você deseja remover (dentro do arquivo server. R). Remova o elemento no parâmetro choice na primeira selectInput no sidebarPanel correspondente à estratégia que você deseja remover (dentro da interface do usuário). Arquivo. R).
Por favor, sinta-se à vontade para entrar em contato caso tenha alguma sugestão.
Um aplicativo simples e brilhante para monitorar as estratégias de negociação.
Em um post anterior, mostrei como usar R, Knitr e LaTeX para criar um relatório de estratégia de modelo. Este post vai um passo além, tornando a análise interativa. Além da interatividade, o Aplicativo Brilhante também resolve dois problemas:
Agora posso acessar todas as minhas estratégias de negociação a partir de um único ponto, independentemente do instrumento negociado. Juntamente com a interatividade brilhante, permite uma comparação mais fácil. Eu posso me concentrar em um período de tempo específico.
O código usado neste post está disponível em um repositório Gist / Github. Existem essencialmente 3 arquivos.
ui. R: controla o layout e a aparência do aplicativo. server. R: contém as instruções necessárias para criar o aplicativo. Ele carrega os dados e os formata. Há um arquivo csv por estratégia, cada um contendo pelo menos duas colunas: date e retorna com o seguinte formato: (& # 8220; 2010-12-22 & # 8243;, & # 8221; 0.04% & # 8221;). Você pode carregar quantas estratégias quiser, desde que elas tenham o formato correto. shinyStrategyG eneral. R: carrega os pacotes necessários e inicia o aplicativo.
Este aplicativo está provavelmente longe de ser perfeito e certamente o aprimorarei no futuro. Sinta-se à vontade para entrar em contato caso tenha alguma sugestão.
Um grande obrigado à equipe do RStudio / Shiny por uma ótima ferramenta.
Usando Algoritmos Genéticos no Comércio Quantitativo.
A pergunta que se deve sempre fazer quando se utiliza indicadores técnicos é o que seria um critério objetivo para selecionar os parâmetros dos indicadores (por exemplo, por que usar uma RSI de 14 dias em vez de 15 ou 20 dias?). Algoritmos genéticos (GA) são ferramentas adequadas para responder a essa pergunta. Neste post eu vou mostrar como configurar o problema em R. Antes de prosseguir, o lembrete usual: O que eu apresento neste post é apenas um exemplo de brinquedo e não um convite para investir. Também não é uma estratégia acabada, mas uma ideia de pesquisa que precisa ser mais pesquisada, desenvolvida e adaptada às necessidades individuais.
O que são algoritmos genéticos?
A melhor descrição do GA que eu descobri vem da Cybernatic Trading, um livro de Murray A. Ruggiero. Os algoritmos genéticos foram inventados por John Holland em meados da década de 1970 para resolver problemas difíceis de otimização. Este método usa a seleção natural, sobrevivência do mais apto & # 8221;. O processo geral segue as etapas abaixo:
Codifique o problema em cromossomos Usando a codificação, desenvolva uma função de adequação para avaliar o valor de cada cromossomo na solução de um determinado problema Inicialize uma população de cromossomos Avalie cada cromossomo na população Crie novos cromossomos acasalando dois cromossomos. Isso é feito mutando e recombinando dois pais para formar dois filhos (os pais são selecionados aleatoriamente, mas influenciados por sua aptidão) Avaliar o novo cromossomo Excluir um membro da população que está menos apto do que o novo cromossomo e inserir o novo cromossomo na população . Se o critério de parada for atingido (número máximo de gerações, os critérios de aptidão são bons o suficiente & # 8230;) então retorne o melhor cromossomo ou vá para o passo 4.
De uma perspectiva de negociação, GA é muito útil porque é bom em lidar com problemas altamente não-lineares. No entanto, eles exibem algumas características desagradáveis que valem a pena mencionar:
Over fitting: Este é o principal problema e cabe ao analista configurar o problema de forma a minimizar esse risco. Tempo de computação: Se o problema não for definido corretamente, pode ser extremamente longo para chegar a uma solução decente e a complexidade aumenta exponencialmente com o número de variáveis. Daí a necessidade de selecionar cuidadosamente os parâmetros.
Existem vários pacotes R lidando com GA, eu escolhi usar o mais comum: rgenoud.
Preços de fechamento diários para a maioria dos ETFs líquidos do Yahoo finance, que remontam a janeiro de 2000. O período de amostragem vai de janeiro de 2000 a dezembro de 2010. O período fora da amostra começa em janeiro de 2011.
A lógica é a seguinte: a função de adequação é otimizada durante o período de amostragem para obter um conjunto de parâmetros ótimos para os indicadores técnicos selecionados. O desempenho desses indicadores é então avaliado no período fora da amostra. Mas antes disso, os indicadores técnicos devem ser selecionados.
O mercado de ações apresenta duas características principais que são familiares para qualquer pessoa com alguma experiência de negociação. Momento de longo prazo e reversão de curto prazo. Essas características podem ser traduzidas em termos de indicadores técnicos por: médias móveis cross over e RSI. Isto representa um conjunto de 4 parâmetros: Períodos de look-back para médias móveis de longo e curto prazo, período de retorno para o RSI e limiar RSI. Os conjuntos de parâmetros são os cromossomos. O outro elemento-chave é a função de fitness. Podemos querer usar algo como: máximo retorno ou taxa de Sharpe ou rebaixamento médio mínimo. A seguir, optei por maximizar o índice de Sharpe.
A implementação de R é um conjunto de 3 funções:
FunçãoFuncional: define a função de adequação (por exemplo, o índice máximo de Sharpe) a ser usado no mecanismo de negociação do Google Analytics: resumo das estatísticas de negociação para dentro e fora dos períodos de amostra para fins de comparação genoud: o mecanismo GA do pacote rgenoud.
A função genoud é bastante complexa, mas eu não vou explicar o que cada parâmetro significa, pois quero manter este post curto (e a documentação é realmente boa).
Na tabela abaixo, apresento para cada instrumento os parâmetros ótimos (período de retorno do RSI, limiar do RSI, média móvel de curto prazo e média móvel de longo prazo) juntamente com as estatísticas de entrada e saída da amostra.
Antes de comentar os resultados acima, quero explicar alguns pontos importantes. Para corresponder à lógica definida acima, limitei os parâmetros para garantir que o período de look-back para a média móvel de longo prazo seja sempre maior que a média móvel mais curta. Eu também limitei o otimizador a escolher apenas as soluções com mais de 50 negociações no período de amostragem (por exemplo, significância estatística).
No geral, os resultados fora da amostra estão longe de serem impressionantes. Os retornos são baixos mesmo se o número de negociações for pequeno para tornar o resultado realmente significativo. No entanto, há uma perda significativa de eficiência entre o período de amostragem dentro e fora do Japão (EWJ), o que muito provavelmente significa um ajuste excessivo.
Este post é destinado a dar ao leitor as ferramentas para usar corretamente o GA em uma estrutura de negociação quantitativa. Mais uma vez, é apenas um exemplo que precisa ser mais refinado. Algumas melhorias potenciais para explorar seriam:
função de fitness: maximizar o índice de Sharpe é muito simplista. A & # 8220; mais inteligente & # 8221; A função certamente melhoraria o padrão de estatísticas de negociação fora da amostra: tentamos capturar um padrão muito simples. Uma pesquisa de padrões mais aprofundada é definitivamente necessária. otimização: há muitas maneiras de melhorar a maneira como a otimização é conduzida. Isso melhoraria tanto a velocidade de cálculo quanto a racionalidade dos resultados.
O código usado neste post está disponível em um repositório Gist.
Negociação do Modelo de Mistura (Parte 4 - Implementação da Estratégia)
Metas do capítulo e links de estrutura de tópicos Introdução Modelo de mistura Algoritmo de negociação Outline GMM Algorithm Implementation Próximos passos.
Use a Parte 3 - pesquisa de estratégia como base para a estratégia de negociação algorítmica. Implemente a estratégia usando a plataforma Quantconnect.
Introdução.
Este notebook vai percorrer o processo de implementação do algoritmo na plataforma quantconnect. Informamos que este notebook não executará o algoritmo, pois não instalei o mecanismo de backtesting de quantconnect localmente. Esta é uma demonstração do processo. O script está disponível para copiar e colar no ambiente quantconnect dentro do diretório ./scripts/ do repositório github.
Notas principais sobre a plataforma Quantconnect.
Eles usam o Python 2.7 e eu não sei quando / se o Python 3 será suportado. Não há depurador interativo no momento. A resolução de problemas pode ser difícil se o seu algoritmo não estiver logicamente estruturado para modularidade. Existem alguns problemas menores de dados que sua equipe está trabalhando com correção. Às vezes, há negociações que são preenchidas incorretamente, portanto, investigar os dados do nível de comércio é importante e, felizmente, simples de se fazer. Chamadas para a função History () criam grandes penalidades de RAM / tempo, por isso é importante codificar seu algoritmo para ser eficiente com suas solicitações de dados.
Modelo de Mistura: Esquema de Algoritmo de Negociação.
O algoritmo usará Gaussian Mixture Models (GMM) para determinar desvios de retorno. Com base na direção outlier, o algoritmo será longo (ou curto) no ETF. Com base na pesquisa realizada no capítulo 3, determinei que um padrão comercializável era uma estratégia de longo prazo com um período de detenção de 63 dias, após um evento de outlier. A estrutura básica do algoritmo é:
Verifique pedidos em aberto:
confirmar todas as ordens são preenchidas as datas de preenchimento da faixa.
Verifique se qualquer participação atual atende aos critérios de liquidação. Nesta implementação, o único critério de liquidação é se mantivemos a garantia pelo período de 63 dias.
verifique se a data de hoje é maior ou igual à data de liquidação. se assim liquidar a posição.
Execute o cálculo principal do algoritmo. Nesta implementação, usamos uma retrospectiva de 252 dias ou aproximadamente 1 ano comercial.
encaixe o GMM usando componentes N. extrair estados ocultos e seus parâmetros amostra da distribuição escolhida usando esses parâmetros intervalos de confiança de computação comparar intervalos com retorno atual para identificar outliers avaliam direção de outliers, por exemplo too_low ou too_high atribuem títulos a longo prazo (ou curtos) com base na direção de outliers.
Use resultados computados para enviar pedidos.
essa implementação usa MarketOnOpenOrders. Isso significa que as ordens de mercado são enviadas para o dia seguinte, depois que um evento de outlier é acionado.
Implementação do Algoritmo GMM.
Primeiro, o algoritmo Quantconnect é importado.
Em seguida, configuramos um PARAMETER_REGISTRY. Isso ajuda a associar o conjunto de parâmetros escolhido a cada backtest. Sem ele, não há como saber quais parâmetros foram usados com o qual o backtest é feito quando você vai comparar os resultados em uma data posterior. No entanto, ao registrar os parâmetros, podemos registrá-los. Esses logs de backtest estão sempre disponíveis para download quando você carrega os resultados do seu backtest.
Em seguida, definimos e registramos os parâmetros globais que a classe de algoritmos usará. Esses parâmetros contêm um sinalizador que registra se a estratégia foi implementada somente por muito tempo, o número de amostras para nossa amostragem de intervalo de confiança, a distribuição escolhida que estamos usando e os parâmetros para o GMM sklearn que implementaremos.
Em seguida, definimos algumas funções globais para tornar a computação do algoritmo um pouco mais simples.
Agora nós definimos a classe de algoritmos que implementará a estratégia. Na quantconnect, todos os algoritmos são uma classe com pelo menos 2 funções definidas: Initialize () e OnData ().
Initialize contém a configuração do algoritmo, incluindo universos, objetos de nível de classe, modelos de corretagem e funções planejadas.
OnData é o manipulador de eventos que é chamado na resolução que escolhemos, e. minuto, hora, diariamente. No entanto, como esse algoritmo usa funções programadas, essa função não é necessária e é simplesmente passada (ed).
A função de inicialização tem muita coisa acontecendo. Além de definir os parâmetros, criamos os gráficos personalizados para controlar a alavancagem, o dinheiro, o uso de RAM e o tempo de computação.
Uma nota rápida sobre as funções do cronograma; A maneira de lê-lo é que as principais funções são agendadas duas vezes por semana às segundas e sextas-feiras para serem executadas depois que o mercado abrir para o SPY etf no número designado de minutos depois. A ação é a função que queremos executar nesse momento.
Outra observação importante é que inicializamos nosso dataframe de histórico de preços. Nós o chamamos aqui para o lookback completo de 252 dias. Posteriormente, definimos uma função chamada update_prices () que calcula o número de dias adicionais do histórico a serem solicitados entre a data atual e a data final do nosso dataframe self. prices. Em seguida, ele solicita apenas esse histórico limitado, concatena e limpa os dados para que tenhamos apenas dados para o período de lookback especificado. Essa metodologia economiza RAM / tempo em massa durante as execuções de backtest.
Em seguida, definimos a função check_liquidate (), que implementa os números 1 e 2 do esboço do algoritmo especificado acima.
Em seguida, definimos duas funções para implementar o cálculo principal do algoritmo. Primeiro, definimos a função compute () que usa um único símbolo, ajusta o GMM, extrai os estados ocultos e seus parâmetros e determina se ocorreram eventos outliers.
Em seguida, definimos a função run_main_algo () que agrega a informação compute () em um dataframe a partir de uma lista de linhas, se e somente se eventos outlier tiverem ocorrido. Isso também é para economizar memória RAM / tempo. Esta função constrói os arrays numpy longos (e / ou curtos) que serão enviados para a função send_orders ().
Em seguida, definimos a função send_orders () que é responsável por enviar as ordens e atualizar nossa lista de tickets de ordem contidos na lista self. openMarketOnOpenOrders. Ele contém algumas verificações para fins de eficiência e tratamento de erros.
Finalmente, definimos nossa função CHART_RAM () que, na verdade, rastreia o uso de RAM, o tempo de computação, a alavancagem e o caixa. Nós também definimos a função OnData () que simplesmente passamos quando todas as funções são programadas.
Novamente, o script completo pode ser encontrado no diretório ./scripts/ do repositório do github. Registre-se no Quantconnect e cole o script no ambiente do Algorithm Lab (backtesting). Teste o algoritmo com vários parâmetros e veja o que você descobriu.
Próximos passos.
Na parte 5, avaliaremos os resultados dos meus backtests usando componentes 1,2 e 4 GMM.
Guia de Estudo de Gerenciamento de MSG.
Implementação da Estratégia - Significado e Passos na Implementação de uma Estratégia.
A implementação da estratégia é a tradução da estratégia escolhida em ação organizacional, de modo a atingir metas e objetivos estratégicos. A implementação da estratégia também é definida como a maneira pela qual uma organização deve desenvolver, utilizar e amalgamar a estrutura organizacional, os sistemas de controle e a cultura para seguir estratégias que levam à vantagem competitiva e a um melhor desempenho. A estrutura organizacional aloca tarefas e funções de desenvolvimento de valor especial aos funcionários e determina como essas tarefas e funções podem ser correlacionadas, de modo a maximizar a eficiência, a qualidade e a satisfação do cliente - os pilares da vantagem competitiva. Mas a estrutura organizacional não é suficiente para motivar os funcionários.
Um sistema de controle organizacional também é necessário. Esse sistema de controle fornece aos gerentes incentivos motivacionais para os funcionários, bem como feedback sobre os funcionários e desempenho organizacional. Cultura organizacional refere-se à coleção especializada de valores, atitudes, normas e crenças compartilhadas por membros e grupos organizacionais.
A seguir, os principais passos para implementar uma estratégia:
Estratégias excelentemente formuladas falharão se não forem implementadas adequadamente. Além disso, é essencial observar que a implementação da estratégia não é possível a menos que haja estabilidade entre a estratégia e cada dimensão organizacional, como estrutura organizacional, estrutura de recompensa, processo de alocação de recursos, etc.
A implementação da estratégia representa uma ameaça para muitos gerentes e funcionários de uma organização. Novas relações de poder são previstas e alcançadas. Novos grupos (formais e informais) são formados, cujos valores, atitudes, crenças e preocupações podem não ser conhecidos. Com a mudança nas funções de poder e status, os gerentes e funcionários podem empregar um comportamento de confrontação.
Autoria / Referenciação - Sobre o (s) autor (es)
Principais assuntos.
Assinatura especial.
Guia de Estudo de Gestão é um tutorial completo para estudantes de gestão, onde os alunos podem aprender os conceitos básicos, bem como conceitos avançados relacionados à gestão e seus assuntos relacionados.
Piotroski F-Score: Implementação - a.
Para assistir a este vídeo, ative o JavaScript e considere a possibilidade de fazer upgrade para um navegador da web que suporte vídeo em HTML5.
Algoritmos de Negociação.
Este curso abrange duas das sete estratégias de negociação que funcionam nos mercados emergentes. Os sete incluem estratégias baseadas em momentum, crashes momentum, reversão de preços, persistência de ganhos, qualidade dos ganhos, crescimento de negócios subjacentes, vieses comportamentais e análise textual de relatórios de negócios sobre a empresa. Na primeira parte do curso, você aprenderá a ler um trabalho acadêmico. Em quais partes prestar atenção e quais partes serão analisadas aqui. Para cada estratégia, primeiro você será apresentado à pesquisa original e, em seguida, como implementar a estratégia. A primeira estratégia, Piotroski F - score, será discutida em detalhes. Você será ensinado como calcular o F - Score e como usar essa pontuação em uma estratégia. Isso é seguido pela próxima estratégia, PEAD (Post earnings announcement drift).
Implementação da Estratégia de Negociação & # 8211; Backtesting e aquisição de dados.
Desenvolver uma estratégia de negociação requer um backtesting meticuloso e reunir várias fontes de dados.
Trabalhamos em colaboração com empresas de investimento para implementar estratégias de negociação. Nós fornecemos assistência com backtesting e aquisição de dados de fontes estruturadas tradicionais e fontes não estruturadas mais recentes. Desenvolvemos as ferramentas e a tecnologia em diferentes aspectos da implementação de uma estratégia de investimento, ou seja, alocação de ativos, construção de portfólio e execução de transações.
Utilizamos técnicas de ciência de dados, como inteligência artificial, aprendizado de máquina e processamento de linguagem natural, para adquirir e analisar dados não estruturados de pesquisas de mercado, notícias, registros regulatórios e outras fontes. O objetivo é permitir que nossos clientes desenvolvam estratégias de negociação que aproveitem todas as informações disponíveis e implementem essas estratégias de maneira eficiente e rápida.
Backtesting do Modelo de Negociação - Auxilia no backtesting e ajustes de algoritmos de negociação e modelos sistemáticos desenvolvidos por sua equipe de investimentos. Aquisição de dados - Adquira dados para modelos de negociação de fornecedores de dados de mercado estruturados tradicionais e adquira e organize automaticamente dados de fontes não estruturadas, como pesquisa de mercado, notícias e registros regulatórios. Conjuntos de dados alternativos - Estruture dados de várias fontes não estruturadas para desenvolver "conjuntos de dados alternativos" # 8221; como dados de pesquisa de clientes, uso de telefone celular e mineração de mídia social.
Desenvolver uma estratégia de investimento.
Embora as estratégias de investimento sejam variadas e exijam experiências variadas, elas podem se beneficiar de um conjunto padrão de técnicas analíticas e tecnologias de dados. Entendemos uma ampla gama de teses de investimento, classes de ativos e os fatores de risco associados. Auxiliamos no backtesting e na aquisição de todos os dados relacionados, permitindo que as equipes de investimento se concentrem no desenvolvimento de suas estratégias de investimento.
Aplicando Tecnologia e Analytics.
Técnicas de ciência de dados como inteligência artificial, aprendizado de máquina e processamento de linguagem natural podem ter um impacto significativo na identificação de ideias de investimento através do processamento de diferentes fontes de informação, auxiliando na tomada de decisões de investimento através de ferramentas de suporte a decisões e controlando riscos.
A aplicação da ciência de dados nos permite aumentar o conjunto de informações analisáveis que podem ser usadas na tomada de decisões de investimento. A análise de dados nos permite incorporar fontes de dados não-tradicionais não-tradicionais em processos de investimento para identificar tendências, anomalias e correlações de rastreamento.
Plataforma de análise de investimento RADIENT.
Utilizamos a RADiENT, nossa plataforma de análise de investimentos líder do setor, para integrar análise de investimentos baseada em risco, avaliação preditiva e análise de cenário no processo de alocação de ativos e construção de portfólio.
No comments:
Post a Comment